

MBW-003-1164007 Seat No. _____

M. Sc. (Mathematics) (Sem. IV) (CBCS) Examination

April / May - 2018

EMT - 4031 : Commutative Ring Theory (New Course)

Faculty Code: 003 Subject Code: 1164007

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) There are five questions.

- (2) All questions are compulsory.
- (3) Each question carries 14 marks.
- 1 Fill in the blanks : (Each question carries two marks) 14
 - (1) When is a property of a ring said to be a local property?
 - (2) Define Artinian ring.
 - (3) Define a Noetherian Module.
 - (4) Define a ring homomorphism. Verify that any ring homomorphism from a field F into a nonzero ring is bijective.
 - (5) Define Jacobson radical of a ring R.
 - (6) Define a primary ideal of a ring R.
 - (7) Prove that 1 and -1 are the only units in \mathbb{Z} .
- 2 Attempt any two:

- **14**
- (a) Prove that the nilradical of a ring R is the intersection of all the prime ideals of R.
- (b) Let M be a module over a ring R. Prove that M is finitely generated if and only if M is isomorphic to a quotient of R^n for some $n \in \mathbb{N}$.

(c)	(i)	Let P_1, \ldots, P_n be prime ideals of a ring R. If an
		ideal of R is such that $I \subseteq \bigcup_{i=1}^{n} P_i$, then show
		that $I \subseteq P_i$, for some $i \in \{1, 2,, n\}$.

- (ii) Let $I_1, I_2,, I_n$ be ideals of a ring R. If a prime ideal P of R satisfies $P \supseteq \bigcap_{i=1}^n I_i$, then prove that $P \supseteq I_i$, for some $i \in \{1, 2,, n\}$.
- **3** All compulsory:

14

- (a) Let P be any nonzero prime ideal of a principal ideal 5 domain R. Prove that P is a maximal ideal of R.
- (b) Let M_1, M_2 be submodules of a moducle M over a fing R. Show that $\frac{M_1 + M_2}{M_1} \cong \frac{M_2}{M_1 \cap M_2}$ as R-modules.
- (c) Let I be an ideal of a ring R. Prove that r(r(I)) = r(I).

OR

3 All compulsory:

14

- (a) Let S be a multiplicatively closed subset of a ring R. For any ideal I of R, prove that $S^{-1}(\sqrt{I}) = \sqrt{S^{-1}}I$.
- (b) Let R be a subring of a ring T. If $t \in T$ is integral over R, then prove that R[t] is finitely generated R-module.
- (c) Let S be a multiplicatively closed subset of a ring R. Let $g: R \to T$ be a ring homomorphism such that g(s) is a unit in T for all $s \in S$. Prove that there exists a unique ring homomorphism $h: S^{-1}R \to T$ such that $g(r) = h\left(\frac{r}{1}\right)$, for all $r \in R$.
- 4 Attempt any two:

14 7

(a) State and prove first uniqueness theorem on decomposable ideals in a ring R.

	(b)	Let M be a module over a ring R. Show that M	7
		satisfies ascending chain condition on submodules if	
		and only if every submodule of M is finitely generated.	
	(c)	Let R be a Noetherian ring. If I is a proper	7
		irreducible ideal of R, then prove that I is primary.	
5	Atte	empt any two:	14
	(a)	State and prove Chinese remainder theorem.	7
	(b)	Prove that the nilradical of an Artin ring R is	7
		nilpotent.	
	(c)	State and prove Nakayama's lemma.	7

3